If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-89=0
a = 1; b = 2; c = -89;
Δ = b2-4ac
Δ = 22-4·1·(-89)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{10}}{2*1}=\frac{-2-6\sqrt{10}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{10}}{2*1}=\frac{-2+6\sqrt{10}}{2} $
| c−216=204 | | 20+6x=94 | | 5x-3=-3x^2 | | 4f=56 | | 7+b/2=22 | | d+19=90 | | r-27=31 | | 4y-2y+7=4 | | 2(x-6)=4x-26 | | 993=3j | | s+23=98 | | -(8n+2)=10-4 | | 9x=0.432 | | N^2=7n+144 | | (x)(0.03+2x)^2=4*10^(-12) | | g/7=4 | | z-45=8 | | 4=2+5x | | 1.5x=0.9 | | (x)(0.03+2x)^2=4*10^-12 | | 34x=41.6399 | | 0.08x=64 | | 7/2-(3x+2/5)=37-x/5 | | 2x=3.1 | | x+3x+6x-12=180 | | 2=t3 | | 2a=3.1 | | 7/2(3x+2/5)=37-x/5 | | 41.6399x=34 | | (5x+3)2−2(3x−5)=4x+16 | | 3n^2-11n=92 | | -4+2x=-0 |